在搜索用户中发现自己的目标用户
目标用户的界定,实际上是一种匹配。搜索用户信息检索需求表现为搜索用的词,而作为网站可以提供什么信息服务,则由自身的业务和内容生产能力来决定。这个匹配过程,其实就是了解自身,用自身的特性,去框搜索用户的过程。最终的产出将是一个符合自己业务的搜索关键词库。
那么,这个关键词库如何来? 基本的关键词获取方式大家都知道,无非是自身,搜索引擎,竞品。包括但不限于以下方式:
1.自身商品或者服务相关的名词,品牌词,属性词等等;
2.站内搜索词;
3.自己的网站在搜索引擎获得曝光和流量的词;
4.百度相关搜索词;
5.百度凤巢扩词接口扩出来的词;
6.百度指数中的相关词;
7.竞品站点上结构化的数据;
8.上述关键词切词后获得的词;
关键词的导入与数理是一个繁杂的工作,也会伴随着对于自身业务的理解,对于搜索用户的了解,而不断完善。最终的产出,将是一个持续流入的关键词库,关键词有明确的词性界定,关键词之间有多维的关系。另外,最好还需要有关键词搜索量与竞争难度等信息。关键词的整理也是一件有趣的事情,一切有效的商业行为都是为了满足人的需求,而研究关键词,就是在研究需求。了解需求,满足需求,是一个小的闭环。
关于关键词特征,举个简单的例子
seo网站优化的系统化策略
实质上,百度大搜召回的模板,就对应着搜索的行为模式。
不同行业的模板,需要自己在大量领域内关键词的基础上去提取特征。
关键词库的整理有些可以通过系统化的方式来实现,比如站内搜索词的导入,百度相关搜索词的抓取,利用凤巢接口获得凤巢扩词,以及切词,词性定义等等。由于与业务紧密耦合,还是有很多非结构化的事情,需要结合人工处理。慢工出细活,在关键词上花再多时间也是值得的,就像商店想卖东西,需要琢磨客户需求,再去迎合客户类似。
实际上,对于用户需求的挖掘,可以从很多地方找到应用。比如广告投放中,DMP公司从事的就是用户特征提取分析的工作,数据用来供广告投放做到精准营销;再如站内的精准化推荐,根据系统track到的用户行为,给用户做相关推荐,等等。
更好的了解目标用户的需求是成功的第一步,对于SEO而言,就是建一个好的词库。有了词库,才能明确需要推动什么信息的生产,来满足搜索用户的检索需求,有了词的关系,才能更好的构建页面内的信息维度,才能更好的布局内链,集聚相关语义的权重。
在搜索结果页中触达用户
很多SEO的初学者会问,学好SEO需要看什么书? 我经常回答,搜索结果页(SERP,SearchEngine Result Page)就是学习SEO最好的资源。由于搜索引擎的算法持续更新,所以搜索结果页才能告诉你当前什么样的做法更能获得好的排名,哪类词商业化很严重,靠纯SEO很难获得流量,等等。毕竟事实胜于一切。
SEO的基本套路无非是对搜索引擎的程序更加友好,满足搜索用户的信息检索需求,给搜索用户更好的体验。
当然也不乏一些黑帽或者擦边的做法,比如利用搜素引擎的一些规则漏洞快速提升排名,最典型的是贻害无穷的点击器;或者利用与搜索引擎的关系做些阿拉丁投放,阿拉丁的特征很明显,搜索结果条目的样式有result-op字样,电商行业曾经与百度合作过的百度微购也属于阿拉丁的范畴;再或者与百度进行换量之类,不过这需要关系和渠道。
抛开上述这些资源和渠道的影响外,回归到SEO的基本套路上来,目标就是要尽可能多的占到搜索结果页的前几位,这样才能实现触达用户的目标。那么问题就变成了如何更多的接近我们的用户呢?